Программирование [Нетология] BIG DATA с нуля (2020)

Moderator
4 Сен 2023
0
-5,162
Автор: Нетология
Название: BIG DATA с нуля (2020)

img-2020-04-11-00-28-50-png.576254


Описание:

Big data — инструменты, подходы и методы обработки огромных объёмов данных. По сути это альтернатива традиционным системам обработки данных.

Если вам требуется общее расширение кругозора в теме технологий работы с данными и необходимость апгрейда на текущем месте работы, курс даст возможность расширить профессиональные навыки, работать с новыми задачами и быстро приносить результаты в проектах.

Зачем изучать Big Data

Up skill профессии

Вас ждёт апгрейд навыков в аналитике данных и понимание, зачем и где нужна big data, новая траектория развития карьеры и более сложные рабочие проекты.
Расширение кругозора

Вы расширите свой кругозор, освоите технологии для перехода на уровень middle и сможете быстрее выполнять свои рабочие задачи.
Переход в новую область

Курс даёт ключевые технологии и навыки для старта погружения в самую горячую профессиональную область. Вы получите практику, достойную включения в резюме.
Что вы узнаете на курсе

Как собрать и управлять командой big data проекта

Освоите подход CRISP-DM: межотраслевой стандартный процесс для исследования данных. Определите компетенции и состав команды.
Как создать стратегию работы с большими данными

Определите, сколько данных вам нужно для нахождения инсайтов. Найдёте задачи под биг дату в своей компании.
Как улучшить результаты обработки данных

Поймёте, как и по каким правилам хранить данные. Сможете обосновывать влияние на сбор данных, мониторинг и отчётность.

Спойлер: Программа
Аналитика больших данных

Часто аналитик данных нужен именно в тех компаниях, которые накопили «какую-то свою» Big data. Чтобы понимать, как он может принести пользу для бизнеса, нужно владеть не только стандартными инструментами вроде Excel и SQL, но и знать характерные только для больших данных принципы обработки, иметь представление о компонентах экосистемы Hadoop и облачных платформах для реализации решений по Big data. Мы не только поговорим об этом, но и попрактикуемся работать с главными инструментами.

Традиционные аналитические подходы. Причины выбора Big data среди многообразия подходов
Машинные методы для обработки данных. Как перестать реагировать и начать прогнозировать
Культура сбора и источники данных. Дорожная карта и главное правило аналитика
Предобработка и визуализация данных в pandas для отчётности на примере международного ритейлера
Улучшение качества работы с данными. Основы архитектуры хранения и обработки больших данных, виды обработки и масштабирования
Основы работы в Hadoop и MapReduce. Обзор облачных платформ: AWS, EMR, Azure и прочих
Продвинутые подходы в MapReduce. Работа в pyspark, доступная каждому
Организация команды для работы с данными. CRISP-DM

Подробнее:


Для просмотра содержимого вам необходимо авторизоваться


Скачать:


Для просмотра содержимого вам необходимо авторизоваться
 
Последнее редактирование модератором: